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Specific heat in a nonequilibrium system composed of Einstein oscillators
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~Received 3 February 2002; published 7 October 2002!

In order to understand the behavior of thermodynamic quantities near the glass transition temperature, we
put the energy landscape picture and the particle’s jump motion together and calculate the specific heat of a
nonequilibrium system. Taking the finite observation time into account, we study the observation time depen-
dence of the specific heat. We assume the Einstein oscillators for the dynamics of each basin in the landscape
structure of phase space and calculate the specific heat of a system with 20 basins. For a given observation
time, a transition from annealed to quenched system occurs at the temperature when the time scale of jumps
exceeds the observation time. The transition occurs at lower temperature and becomes sharper for longer
observation time.

DOI: 10.1103/PhysRevE.66.041103 PACS number~s!: 05.70.Ln, 64.70.Pf
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I. INTRODUCTION

Statistical dynamics for sytems in equilibrium has be
well established and thermodynamic properties can be ca
lated from microscopic informations. On the other hand,
systems in nonequilibrium, definitions for ‘‘thermodynamic
properties are unclear and the framework to calculate th
propeties has not been established. Although we have ha
way to obtain thermodynamic properties of systems in n
equilibrium, measurements of these properties such as
cific heat, specific volume, etc. in supercooled liquids ha
been actually reported@1#.

Many efforts for understanding the vitrification proce
have been done through experiments, theories, and nume
simulations in recent years@2#. Theoretical studies hav
clarified some characteristics in the vitrification process. T
mode-coupling theory@3#, a mean field approach to the liq
uid dynamics, showed that an ergodic-to-nonergodic tra
tion occurs. In the trapping diffusion model@4#, a power-law
distribution of jump rates was shown to lead to a unifi
understanding of the dynamical singularities of the gl
transition. The replica method@5#, which is based on the
energy landscape picture, has been applied to calculate
modynamic properties of glasses such as free energy, inte
enegy, and specific heat. In this approach, the Kauzm
temperature at which the excess entropy vanishes is an
glass transition point. This approach is, however, within
equilibrium framework.

Though these theoretical approaches have been clar
some aspects of the glass transition, the anomaly of the
modynamic quantities at the glass transition, for example
abrupt change of the specific heat and a cooling rate de
dence of the glass transition temperature, cannot be un
stood by these approaches. So far there are no other the
ical studies trying to understand the anomaly
thermodynamic quantities at the glass transition. The purp
of this paper is to give a clear definition of the specific h
of a system in nonequilibrium and devise a theoreti
method to evaluate it. We assume that a system in none
librium can be described within the energy landscape pict
By considering the stochastic motion among basins in
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energy landscape, we phenomenologically show the me
nism of the glass transition.

In this paper, we show that one can understand
anomaly of specific heat from the picture of particle’s jum
motion in landscape. In Sec. II, a general formalism of c
culating specific heat in nonequilibrium systems is summ
rized @6#. In Sec. III, the results for the model composed
20 basins, each of which is made of Einstein oscillators,
shown. We show that a transition from annealed to quenc
system occurs and that the transition depends on the ob
vation time. Conclusion and discussion are given in Sec.

II. FORMALISM

From the direct observation of the particle’s motion
means of molecular dynamic simulation for the supercoo
state of a binary soft-sphere system, it was found that so
particles change their location simultaneously@7#. This co-
operative jump motion of particles became the base of
trapping diffusion model. Moreover it was reported that t
kinetics in supercooled liquids can be separated into
motions, slow stochastic jump motion and fast localized m
tion @8#. Odagaki and Yoshimori@9# showed that the exis
tence of fast and slow motions gives rise to the power-l
jump rate distribution in the low jump rate limit. This powe
law jump rate distribution leads to a unified understanding
the dynamical singularities of the glass transition@4#. There-
fore, it is important for understanding the real glass transit
to take the jump motion of particles into account. We put t
energy landscape picture and the jump motion of partic
together and assume that a representative point moves in
phase space which has a landscape structure. The motion
basin in the landscape corresponds to the localized motio
the real space. The motion among basins in the landsc
corresponds to the stochastic jump motion of particles in
real space. There are many works to treat the connected
work of potential minima, and some@10# of them can give
correctly long time dynamical behavior of the system out
equilibrium.

In order to distinguish these two motions, the motion in
basin and the motion among basins, it is required that c
acteristic time scales of fast and slow motions should
©2002 The American Physical Society03-1
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apparently different. That is, the time scale of relaxing with
a basin is much smaller than the time scale of jump
among basins. We assume that the system is locally in e
librium, namely, the local system equilibrates instantly due
the fast motion.

Under the picture of a jumping representative point in
energy landscape, nonequilibrium energy of a system at t
t is defined by

e~T,t !5(
i

pi~T,t !Ei~T!, ~1!

wherepi(T,t) denotes the probability that the system is
basin i and Ei(T) is the energy of basini in local equilib-
rium. Note thatT is the temperature of environment~heat
bath!, and we have assumed that the local energy relaxe
an equilibrium value at this temperature without delay, b
the probability distribution relaxes with some delay. It is im
portant to note that the probability distribution depends
the history of temperature control~measurement procedure!.
Here we consider the following simple temperature con
of heat bath,

T~ t !5H T ~ t<0!

T8 ~ t.0!,
~2!

whereT85T1DT. Under this temperature control, we d
fine nonequilibrium specific heat at temperatureT and the
observation timetobs as follows@6#,

c~T,tobs!5 lim
DT→0

e~T1DT,tobs!2e~T,tobs!

DT

5(
i

S pi~T,tobs!
dEi~T8!

dT8
UT85T

1
dpi~T8,tobs!

dT8
U

T85T

Ei~T!D . ~3!

Note that we defined the difference of nonequilibrium ene
of a system for the temperature control of heat bath
De(T,tobs)5e(T1DT,tobs)2e(T,tobs), and not by
D8e(T,tobs)5e(T1DT,tobs)2e(T,0). If the probability is
not in equilibrium at timet50, the specific heat using th
energy differenceD8e cannot be defined correctly unless tw
limits of DT→0 andtobs→0 are performed simultaneous
and it does not coincide with an equilibrium value in t
limit of tobs→`. In definition ~3!, we consider energy dif-
ference between the real nonequilibrium energy at timetobs
and the imaginary nonequilibrium energy at timetobs. As a
result, we can consistently define the specific heat at
time by usingDe and this is a natural definition for theore
ical treatment. Note that, for the temperature control~2!, the
distribution at timet50 is in equilibrium and the imaginary
nonequilibrium energy att5tobs coincides with that att
50, e(T,tobs)5e(T,0). In this case, the definition~3! coin-
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cides with the experimental definition. The comparison w
the definition of specific heat in the actual experiments
performed in Appendix.

Now we can argue the general behavior of the observa
time dependence of nonequilibrium specific heat. In the lim
of tobs→0, the probability distribution stays in an equilib
rium state at temperatureT and the second term on the righ
hand side~rhs! of Eq. ~3!, which is the derivative ofT8,
disappears. Consequently, the specific heat becomes
quenched average( i Pi

eq(T)@dEi(T)/dT# @11#. In the limit
of tobs→`, the probability distribution is to be an equilib
rium one at temperatureT8 and the specific heat becomes t
annealed average with the second term on the rhs of Eq.~3!.
Therefore a system shows quenchedlike specific heat for
short time observation and annealedlike one for the long t
observation. Here the contribution of the second term on
rhs of Eq.~3! represents the effect of jump motion amon
basins. In a previous work@6#, we showed that this frame
work gives the valid specific heat for the gaseous hydro
that was known to have two species,ortho-hydrogen and
para-hydrogen, and considered to be a two-basin system

III. CALCULATION AND RESULTS

With the formalism described in Sec. II, we can calcula
the specific heat in nonequilibrium systems if the fast d
namics of each basin and the probability distributionpi(T,t)
are given. In the supercooled liquid sufficiently close to t
glass transition, a representative point jumps around am
many basins, each of which is a quasistable state. We
sider a system with many basins, each of which is made
Einstein oscillators. In this formalism, we expect that t
qualitative nature of the specific heat is independent of
number of basins. Then we set up the number of basins a
for the sake of convenience. We assume that the Eins
frequency that characterizes the energy of basini is ex-
pressed asvE

( i )5Ri3vE* , whereRi is a uniforim random
RiP@1,3# andvE* is a constant. Different basins have diffe
ent configurations, and different configurations have differ
state densities. In general, the state density is approxim
in the Einstein model by ad function, where thed function
corresponds to an Einstein frequency. Therefore each b
would have a differnt Einstein frequecy from others. We a
sume the existence of minimum and maximum in Einst
frequencies, because amorphous nature cannot produce
wave length modes as long as system size and an Ein
frequency as an approximated frequency would be finite. T
former corresponds to the minimum and the latter cor
sponds to the maximum. We set up values of the minim
and the maximum asvE* and 3vE* for the sake of conve-
nience. The flat distribution is just a model and differe
distributions can be considered. However, we do not exp
significant change in the results.

Time evolution of the probability distribution is assume
to obey the master equation

ṗi~T,t !52(
j Þ i

20

v i j ~T!pi~T,t !1(
j Þ i

20

v j i ~T!pj~T,t !. ~4!
3-2
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FIG. 1. ~Color online only.! Observation time dependence of specific heat for a model composed of 20 basins, each of whic
Einstein oscilators system. The lines show specific heat forCtobs50(quenched),102,104,106,108,`(annealed) from right to left.
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By solving this set of equations numerically, we obtain t
probability distribution function at timet5tobs, pi(T,tobs).
We set a transition rate from basini to j as follows,

v i j ~T!5C exp$2b@FA~T!2Fi~T!#%, ~5!

where Fi(T) is a free energy of an Einstein oscillator
basin i, and FA(T)5max$Fi(T),Fj(T)%1\vE*a is an activa-
tion free energy introduced between basinsi andj. The quan-
tity C21 is the unit of time anda is a positive constant. We
obtain the temperature derivatives of those distributions
]pi(T,t)/]T.@pi(T1DT,t)2pi(T,t)#/DT.

We can calculate the nonequilibrium specific heat of t
system from Eq.~3!. Figure 1 shows the observation tim
dependence of the nonequilibrium specific heat. In this
ure, results are presented for observation tim
Ctobs50~quenched system!, 102,104,106,108,`~annealed
system!. From this figure, we can see that, at a given te
perature, the nonequilibrium specific heat is transform
from quenchedlike to annealedlike specific heat with incre
ing observation time. We can also see that, at a giventobs, it
is transformed from annealedlike to quenchedlike spec
heat with decreasing temperature~glass transition!.

In order to quantify how the system approaches an
nealed system at a given temperature and a given observ
time, we define degree of annealing by

S~T,tobs![
c~T,tobs!2cQ~T!

cA~T!2cQ~T!
, ~6!

wherecA(T) is the specific heat of the annealed system a
cQ(T) is that of the quenched system. The degree of ann
ing becomesS(T,tobs)50 for the quenched system an
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S(T,tobs)51 for the annealed system and thus we can qu
tify the state of a system by the parameter that varies
between@0,1#. The observation time dependence of the d
gree of annealing is shown in Fig. 2. In this figure, the b
haviors of S(T,tobs) are shown for observation times
Ctobs5102,104,106,108. We can see that as the temperatu
is reduced, a transition from the annealed to quenched
tems occurs at lower temperatures and the transition beco
sharper for longer observation times. This might be relate
the cooling rate dependence of the glass transition temp
ture.

IV. CONCLUSION AND DISCUSSION

We have given a framework for understanding the beh
ior of specific heat in nonequilibrium systems like supe
cooled liquids with the existence of fast modes and sl
modes. Under the picture of a jumping representative po
in the landscape, we defined the specific heat dependin
temperature history and suggested a general formalism
calculate specific heat in nonequilibrium systems.

Comparing our work with the work of Angelaniet al.
@10#, we found that the picture of energy landscape an
jump dynamics described by the master equation were s
in both works. Angelaniet al. gave correctly long time dy-
namical behavior of the system out of equilibrium by mea
of the connected network of basins. On the other hand,
aimed to evaluate thermodynamic quantities of the sys
out of equilibrium by means of the similar picture. Diffe
ences were that we assumed dynamics of a minimum in
landscape and that we simply defined transition rate betw
two minima. The significance of our work was to take t
3-3
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FIG. 2. ~Color online only.!
Observation time dependence o
the degree of annealing. The line
are behavior for Ctobs

5102,104,106,108 from right to
left.
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temperature control of heat bath into account and to calcu
the specific heat out of equilibrium which depends on
waiting time and the observation time. In this paper, we c
sidered the case of infinite waiting time limit and showed
observatiion time dependence of specific heat. Then
abrupt change of specific heat from annealed to quenc
state was shown in the case of finite observation time.

Calculating the nonequilibrium specific heat of a mod
system with 20 basins, each basin being made of the Eins
oscillators, we obtained the following results.~i! Glass tran-
sition is a transision from annealed to quenched systems~ii !
glass transition occurrs at lower temperatures and beco
sharper for longer observation times.

We can qualitatively understand the anomaly of spec
heat near the glass transition point, even if we use a sim
model system. Basically, localized equilibrium in each ba
of the landscape and jump motion of a representative p
among basins are important for our calculation. Note that
motion within a basin may clarify the nature of the bos
peak.

The origin of the peak of the specific heat in annea
systems can be understood as follows. There are many
ergy levels in each basin. For sufficiently low temperatur
the representative point moves mostly among the lowest
els in each basin. If these levels have an energy gap,
specific heat for an annealed system shows a peak as a
tion of temperature. For a quenched system, the mo
among basins will not occur and thus the peak disapp
Note that this picture depends on the distribution of ene
levels. If there are not gaps among the lowest levels, then
peak of the specific heat disappears.

In the realistic systems, there exist many kinds of rel
ation times. The essence of the transition from anneale
quenched state is that some of those relaxation times ex
the observation time (tobs). In this paper, we assume th
two-time scale hypothesis on the basis of the result of m
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lecular dynamic simulations@7#, and it is reasonable for tem
peratures sufficiently close to the glass transition point.
simplify the behavior of growing relaxation times, we em
ploy the two-time scale hypothesis, where one is zero and
other is finite but grows with decreasing temperature. F
high temperatures, these two time scales are by far less
tobs. Then the system is always in an annealed state at
observation time. For temperatures close to the glass tra
tion point, one relaxation time is finite but less thantobs.
Then these two time scales are distinguishable macrosc
cally. For temperatures less than the glass transition po
one relaxation time is finite but larger thantobs. Then a
successive transition between annealed and quenched sy
occurs. This kind of transition would be critical for the gla
transition.

Various control of temperature and various distribution
activation energies must be considered for more general
calculations. These works will be studied in a forthcomi
paper.
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APPENDIX

We consider a measurement operation of specific hea
follows. Suppose that a system in equilibrium at temperat
T becomes that in equilibrium at temperatureT8 after adding
energyDE. The experimental definition of specific heat
this case can be written as
3-4
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cE~T![
DE

T82T
, ~A1!

wherecE(T) represents the specific heat at constant volu
Moreover one can extend the definition~A1! to the system in
nonequilibrium. The definition is expressed as

cNE~T,t ![
DE

Tf~ t !2T
, ~A2!

whereTf(t) is a fictive temperature and becomes equilibriu
temperatureT8 at t5`. When the relaxation time exceed
the observation time and a system is out of equilibrium, o
measures the fictive temperature as the temperature o
system. Then the specific heat of this system deviates f
that in equilibrium.

Now we consider the following case. The system, wh
is the same as the former one, is in contact with a heat b
at temperatureT. When the temperature of the heat bath
changed toT8 at timet50, the energy of the system chang
from e(T,0) to e(T8,t), wheree(T,t) is nonequilibrium en-
ergy. According to our formalism, specific heat in this case
defined as

c~T,t ![
e~T8,t !2e~T,0!

T82T
. ~A3!

This coincides with the definition~3! in the limit of T8
→T. The nonequilibrium energy can be expressed
o
S
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e„T(t),t…5( i pi„T(t),t…Ei„T(t)… under the picture of energy
landscape, whereT(t) is the temperature of environmen
~heat bath! at timet, and the energye„T(t),t… depends on the
temperature control of heat bath. On the assumption that
system is in equilibrium att50, it is expressed thate(T,0)
5( i Pi

eq(T)Ei(T)[E(T), whereE(T) is the equilibrium en-
ergy of the system atT. On the other hand, the nonequilib
rium energy can also be expressed as

e„T~ t !,t…5E~T!1$E~T8!2E~T!%$12f„T~ t !,t…%,
~A4!

where f„T(t),t… is a relaxation function satisfying with
limt→0f„T(t),t…51 and limt→`f„T(t),t…50. The energy
variation between two equilibrium states is written
E(T8)2E(T)5DE. With the expression~A4!, the specific
heat in nonequilibrium system can be expressed as follo

c~T,t !5
DE

T82T
$12f„T~ t !,t…%[

DE

T81c„T~ t !,t…2T
,

~A5!

where c„T(t),t… is an adequate function for holding th
equation. Then the form of the definition~A5! coincides with
the definition~A2!.

From these considerations, we found that the theoret
definition ~A3! is compatible with the experimental defin
tion ~A2!. Therefore it seems to be valid to describe noneq
librium systems by using the definition~A3!.
J.

l

.

v.
@1# G.E. Gibson and W.F. Giauque, J. Am. Chem. Soc.40, 93
~1923!; V.F. Simon and F. Lange, Z. Phys.38, 227 ~1926!.

@2# Proceedings of the Fourth International Discussion Meeting
Relaxations in Complex Systems, Creta, Greece, 2001;
papers in J. Non-Cryst. Solids307–310 ~2002!.

@3# E. Leutheusser, Phys. Rev. A29, 2765 ~1984!; W. Götze; in
Liquids, Freezing and the Glass Transition, edited by J. P.
Hansenet al. ~North-Holland, Amsterdam, 1991!, p. 287; W.
Götze and L. Sjo¨gren, Rep. Prog. Phys.55, 241 ~1992!.

@4# T. Odagaki, Phys. Rev. Lett.75, 3701 ~1995!; T. Odagaki,
Prog. Theor. Phys. Suppl.126, 9 ~1997!.

@5# R. Monasson, Phys. Rev. Lett.75, 2847 ~1995!; M. Mézard
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