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Specific heat in a nonequilibrium system composed of Einstein oscillators
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In order to understand the behavior of thermodynamic quantities near the glass transition temperature, we
put the energy landscape picture and the particle’s jump motion together and calculate the specific heat of a
nonequilibrium system. Taking the finite observation time into account, we study the observation time depen-
dence of the specific heat. We assume the Einstein oscillators for the dynamics of each basin in the landscape
structure of phase space and calculate the specific heat of a system with 20 basins. For a given observation
time, a transition from annealed to quenched system occurs at the temperature when the time scale of jumps
exceeds the observation time. The transition occurs at lower temperature and becomes sharper for longer
observation time.
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[. INTRODUCTION energy landscape, we phenomenologically show the mecha-
nism of the glass transition.

Statistical dynamics for sytems in equilibrium has been In this paper, we show that one can understand the
well established and thermodynamic properties can be calc@nomaly of specific heat from the picture of particle’s jump
lated from microscopic informations. On the other hand, formotion in landscape. In Sec. II, a general formalism of cal-
systems in nonequilibrium, definitions for “thermodynamic” culating specific heat in nonequilibrium systems is summa-
properties are unclear and the framework to calculate thed&€d[6]. In Sec. llI, the results for the model composed of

propeties has not been established. Although we have had & basins, each of which is made of Einstein oscillators, are
shown. We show that a transition from annealed to quenched

way to obtain thermodynamic properties of systems in nons o
equilibrium, measurements of these properties such as Spgys_tem_occurs and t_hat the transition depenc_is on the obser-
cific heat, specific volume, etc. in supercooled liquids haVevanon time. Conclusion and discussion are given in Sec. IV.
been actually reported.].

Many efforts for understanding the vitrification process Il. FORMALISM
have been done through experiments, theories, and numerical

simulations in recent yearE2]. Theoretical studies have  ['om the direct observation of the particle’s motion by

clarified some characteristics in the vitrification process. Thés];z{aenzfog mf&ugn?ggﬁé?:ss;gglritlﬁnv&gg t%ir?cl;rt)ﬁgtlos%?r?e
mode-coupling theory3], a mean field approach to the liq- particles change their location simultaneoully. This co-

uid dynamics, showed that an ergodic-to-nonergodic trans'()perative jump motion of particles became the base of the

tlpn oceurs. n Fhe trapping diffusion modg], a power-lav_v_ trapping diffusion model. Moreover it was reported that the
distribution of jump rates was shown to lead to a unified;netics’ in supercooled liquids can be separated into two
understanding of the dynamical singularities of the glass,qtions, slow stochastic jump motion and fast localized mo-
transition. The replica methofb], which is based on the on [8]. Odagaki and Yoshimori9] showed that the exis-
energy landscape picture, has been applied to calculate thgence of fast and slow motions gives rise to the power-law
modynamic properties of glasses such as free energy, interngimp rate distribution in the low jump rate limit. This power-
enegy, and specific heat. In this approach, the Kauzmangw jump rate distribution leads to a unified understanding of
temperature at which the excess entropy vanishes is an idegle dynamical singularities of the glass transitidh There-
glass transition point. This approach is, however, within thefore, it is important for understanding the real glass transition
equilibrium framework. to take the jump motion of particles into account. We put the
Though these theoretical approaches have been clarifieghergy landscape picture and the jump motion of particles
some aspects of the glass transition, the anomaly of the thetegether and assume that a representative point moves in the
modynamic quantities at the glass transition, for example, aphase space which has a landscape structure. The motion in a
abrupt change of the specific heat and a cooling rate depelasin in the landscape corresponds to the localized motion in
dence of the glass transition temperature, cannot be undeihe real space. The motion among basins in the landscape
stood by these approaches. So far there are no other theoretrresponds to the stochastic jump motion of particles in the
ical studies trying to understand the anomaly ofreal space. There are many works to treat the connected net-
thermodynamic quantities at the glass transition. The purposeork of potential minima, and soné.0] of them can give
of this paper is to give a clear definition of the specific heatcorrectly long time dynamical behavior of the system out of
of a system in nonequilibrium and devise a theoreticalequilibrium.
method to evaluate it. We assume that a system in nonequi- In order to distinguish these two motions, the motion in a
librium can be described within the energy landscape picturebasin and the motion among basins, it is required that char-
By considering the stochastic motion among basins in thacteristic time scales of fast and slow motions should be
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apparently different. That is, the time scale of relaxing withincides with the experimental definition. The comparison with

a basin is much smaller than the time scale of jumpinghe definition of specific heat in the actual experiments is

among basins. We assume that the system is locally in equperformed in Appendix.

librium, namely, the local system equilibrates instantly due to Now we can argue the general behavior of the observation

the fast motion. time dependence of nonequilibrium specific heat. In the limit

Under the picture of a jumping representative point in theof t,,<—0, the probability distribution stays in an equilib-
energy landscape, nonequilibrium energy of a system at timgum state at temperatufieand the second term on the right-

t is defined by hand side(rhs) of Eq. (3), which is the derivative ofT”’,
disappears. Consequently, the specific heat becomes the
quenched averagg;PFYT)[dE;(T)/dT] [11]. In the limit

e(T’t)ZZ Pi(TOE(T), (1) of t,,.—c, the probability distribution is to be an equilib-
rium one at temperatufE’ and the specific heat becomes the
annealed average with the second term on the rhs of3rq.

Therefore a system shows quenchedlike specific heat for the

short time observation and annealedlike one for the long time

bservation. Here the contribution of the second term on the

s of Eq.(3) represents the effect of jump motion among

where p;(T,t) denotes the probability that the system is in
basini and E;(T) is the energy of basin in local equilib-
rium. Note thatT is the temperature of environmeftieat
bath, and we have assumed that the local energy relaxes t

an equilibrium value at this temperature without delay, bu . . .
g b Y asins. In a previous worl6], we showed that this frame-

the probability distribution relaxes with some delay. It is im- work gives the valid specific heat for the gaseous hydrogen

portant to note that the probability distribution depends Onth ¢ K o h i iestho hvd d
the history of temperature contr@heasurement procedure at was known 1o have two speciasiho-nydrogen an
Ipara-hydrogen, and considered to be a two-basin system.

Here we consider the following simple temperature contro
of heat bath,
IIl. CALCULATION AND RESULTS

T (t<0) With the formalism described i lcul
(2) ith the formalism described in Sec. ”,We can calculate

T (t>0), the specific heat in nonequilibrium systems if the fast dy-
namics of each basin and the probability distributm(r,t)

whereT'=T+AT. Under this temperature control, we de- are given. In the supercooled liquid sufficiently close to the

fine nonequilibrium specific heat at temperatdreand the glass transition, a representative point jumps around among

T(H)=

observation time,, as follows[6], many basins, each of which is a quasistable state. We con-
sider a system with many basins, each of which is made of

o e(T+AT, topd —e(T,tops Einstein oscillators. In this formalism, we expect that the

c(T,topg) = lim gualitative nature of the specific heat is independent of the

AT—0 AT number of basins. Then we set up the number of basins as 20

for the sake of convenience. We assume that the Einstein
frequency that characterizes the energy of basie ex-
pressed asol)=R, X 0 , whereR, is a uniforim random
Rie[1,3] andwg is a constant. Different basins have differ-
ent configurations, and different configurations have different
Ei(T) | 3 state densities. In general, the state density is approximated
in the Einstein model by & function, where the5 function
) ) o corresponds to an Einstein frequency. Therefore each basin
Note that we defined the difference of nonequilibrium energy,ouid have a differnt Einstein frequecy from others. We as-
of a system for the temperature control of heat bath bysyme the existence of minimum and maximum in Einstein
Ae(T,top) =€(T+AT,topd —€(T,topd, @and  not by  grequencies, because amorphous nature cannot produce long
A'e(T,topd =€(T+AT,topg —€(T,0). If the probability is  \wave length modes as long as system size and an Einstein
not in equilibrium at timet=0, the specific heat using the frequency as an approximated frequency would be finite. The
energy differencé’e cannot be defined correctly unless two former corresponds to the minimum and the latter corre-
limits of AT—0 andt,ps—0 are performed simultaneously sponds to the maximum. We set up values of the minimum
and it does not coincide with an equilibrium value in the 3nd the maximum as’ and 3w} for the sake of conve-
limit of tops—ce. In definition (3), we consider energy dif- nience. The flat distribution is just a model and different
ference between the real nonequilibrium energy at tigs¢  gjstributions can be considered. However, we do not expect
and the imaginary nonequilibrium energy at timgs. As a significant change in the results.

result, we can consistently define the specific heat at any “Time evolution of the probability distribution is assumed
time by usingAe and this is a natural definition for theoret- {5 gpey the master equation

ical treatment. Note that, for the temperature cont2p| the

dE(T")
dT’

T =T

= EI ( pi(T!tObS)

dpi(T't
i p|( obs)
dT’

T =T

distribution at timet=0 is in equilibrium and the imaginary 20 20
nonequilibrium energy at=t,,s coincides with that at (T 1) = — (T (T + (TVp: (Tt 4
=0, e(T,topd =€(T,0). In this case, the definitiof8) coin- Pi(T.0) qun @y (DR(T.H JE# i (Dpy(T.H- (@)

041103-2



SPECIFIC HEAT IN A NONEQUILIBRIUM SYSTEM. .. PHYSICAL REVIEW E566, 041103 (2002

1 T T T T T
[t ]
"% Annealed e
i \ e
0.8 ': I'.| _,_,.,--"'"'_;j-:_::-_ E
i . o -
- ] _,.,--"""'-FF i
< | {\fm_ T
- : | = &
-2 osh ! A e §
— ) -’f
] [ '} Y
s | [ / - Quenched
T | i
) | f #
lM-F: 04 F | ! I| lll,l' .-" |
~ ' | | .
T f ol
{ ) &
L SEN. .
0.2 | | II| }.5
|
{ ]
Iy
A L M 1 I M L M
o
0 0.2 0.4 0.6 0.8 1 1.2 1.4

kpT [hwy

FIG. 1. (Color online only) Observation time dependence of specific heat for a model composed of 20 basins, each of which is an
Einstein oscilators system. The lines show specific hea€fg.= 0(quenched), 110", 1, 1¢?,c(annealed) from right to left.

By solving this set of equations numerically, we obtain theS(T,t,, =1 for the annealed system and thus we can quan-
probability distribution function at timé=t,,s, pi(T,topg - tify the state of a system by the parameter that varies in
We set a transition rate from basiro j as follows, between 0,1]. The observation time dependence of the de-
gree of annealing is shown in Fig. 2. In this figure, the be-
wij(T)=Cexp{—~ BLFA(T) - Fi(T) ]}, 5  haviors of S(T,t,,) are shown for observation times;

where F;(T) is a free energy of an Einstein oscillator in Clobs= 102’104’106’_198- We can see that as the temperature
basini, and F(T)=maxF(T),F;(T)}+hwka is an activa- is reduced, a transition from the annealed to qggnched Sys-
tion free energy introduced between basiasdj. The quan- tems occurs at lower temperatures and t.he transition becomes
tity C~L is the unit of ime andk is a positive constant. We sharper for longer observation times. This mlght_pe related to
obtain the temperature derivatives of those distributions a{;he cooling rate dependence of the glass transition tempera-
Ipi(T.)1aT=[p;(T+AT,t)—p;(T,H) J/AT. u

We can calculate the nonequilibrium specific heat of this
system from Eq(3). Figure 1 shows the observation time

IV. CONCLUSION AND DISCUSSION

dependence of the nonequilibrium specific heat. In this fig-
ure, results are presented for observation times; \ye have given a framework for understanding the behav-

Ctobs=0(quenched system 1C%,10f,1C°,10%,=2(annealed jor of specific heat in nonequilibrium systems like super-
system. From this figure, we can see that, at a given temqoled liquids with the existence of fast modes and slow
perature, the nonequilibrium specific heat is transformegnodes. Under the picture of a jumping representative point
from quenchedlike to annealedlike specific heat with increasi, the landscape, we defined the specific heat depending on
ing observation time. We can also see that, at a giyef) it temperature history and suggested a general formalism to
is transformed from annealedlike to quenchedlike specifiq|culate specific heat in nonequilibrium systems.
heat with decreasing temperatugtass transition Comparing our work with the work of Angelargt al.

In order to quantify how the system approaches an anf10), we found that the picture of energy landscape and a
nealed system at a given temperature and a given observatigimp dynamics described by the master equation were same

time, we define degree of annealing by in both works. Angelangt al. gave correctly long time dy-
namical behavior of the system out of equilibrium by means

S(T tope) = C(T tops) —C¥(T) 6) of the connected network of basins. On the other hand, we
iLob AT)—cT) aimed to evaluate thermodynamic quantities of the system
out of equilibrium by means of the similar picture. Differ-

wherec”(T) is the specific heat of the annealed system andnces were that we assumed dynamics of a minimum in the
c®(T) is that of the quenched system. The degree of annealandscape and that we simply defined transition rate between
ing becomesS(T,t,,) =0 for the quenched system and two minima. The significance of our work was to take the
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temperature control of heat bath into account and to calculatiecular dynamic simulations], and it is reasonable for tem-
the specific heat out of equilibrium which depends on theperatures sufficiently close to the glass transition point. To
waiting time and the observation time. In this paper, we consimplify the behavior of growing relaxation times, we em-
sidered the case of infinite waiting time limit and showed thEp|oy the two-time scale hypothesis, where one is zero and the
observatiion time dependence of specific heat. Then aBther is finite but grows with decreasing temperature. For
abrupt change of specific heat from annealed to quenchegigh temperatures, these two time scales are by far less than
state was shown in the case of finite observation time. ¢ ' Then the system is always in an annealed state at the
Calculating the nonequilibrium specific heat of a modelypsenyation time. For temperatures close to the glass transi-
system with 20 basins, each basin being made of the Einste),, point, one relaxation time is finite but less thagp..
Then these two time scales are distinguishable macroscopi-
cally. For temperatures less than the glass transition point,

oscillators, we obtained the following resulfg. Glass tran-
sition is a transision from annealed to quenched systéms,
Bhe relaxation time is finite but larger thag,s. Then a
successive transition between annealed and quenched system

glass transition occurrs at lower temperatures and becom
ccurs. This kind of transition would be critical for the glass

sharper for longer observation times.
%

We can qualitatively understand the anomaly of specifi
fransition.
Various control of temperature and various distribution of

heat near the glass transition point, even if we use a simpl

model system. Basically, localized equilibrium in each basin

of the landscape and jump motion of a representative POIN .ty ation energies must be considered for more generalized
among bgsms are important . our calculation. Note that the o 1ations. These works will be studied in a forthcoming
motion within a basin may clarify the nature of the bosonpaper

peak.

The origin of the peak of the specific heat in annealed
systems can be understood as follows. There are many en-
ergy levels in each basin. For sufficiently low temperatures, ACKNOWLEDGMENT
the representative point moves mostly among the lowest lev- ] ) o
els in each basin. If these levels have an energy gap, the 1hiS study was partially supported by a Grant-in-Aid for
specific heat for an annealed system shows a peak as a funecientific Research from the Ministry of Education, Science,

tion of temperature. For a quenched system, the motiorPOrts and Culture.
among basins will not occur and thus the peak disappear.

Note that this picture depends on the distribution of energy

levels. If there are not gaps among the lowest levels, then the
peak of the specific heat disappears.

In the realistic systems, there exist many kinds of relax-

ation times. The essence of the transition from annealed tfollows. Suppose that a system in equilibrium at temperature
quenched state is that some of those relaxation times exced@dhecomes that in equilibrium at temperatdreafter adding
the observation timet(,J. In this paper, we assume the energyAE. The experimental definition of specific heat in

APPENDIX

We consider a measurement operation of specific heat as

two-time scale hypothesis on the basis of the result of mothis case can be written as
041103-4
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c AE e(T(t),t)=3;p;(T(t),t)E;(T(t)) under the picture of energy
c(M=—-—, (Al)  landscape, wherd(t) is the temperature of environment
=T (heat bathat timet, and the energg(T(t),t) depends on the

wherecE(T) represents the specific heat at constant volum temperature control of heat bath. On the assumption that the

Moreover one can extend the definitiohl) to the system in SySteTq'S in equilibrium at=0, it is e_:xpressed_ ,thE,H(T'O)

nonequilibrium. The definition is expressed as =ZPT(T)E(T)=E(T), whereE(T) is the equilibrium en-
ergy of the system at. On the other hand, the nonequilib-
rium energy can also be expressed as

e(T(t),)=E(T) +{E(T") —E(T)H{1- &(T(1),1)},
(A4)

cNE(T,b)

-1 -
whereT¢(t) is a fictive temperature and becomes equilibrium
temperaturel’ att=c. When the relaxation time exceeds , ) , L ,
the observation time and a system is out of equilibrium, ondvhere ¢(T(t),t) is a relaxation function satisfying with
measures the fictive temperature as the temperature of tH@—o®(T(t),)=1 and lim_..¢(T(t),t)=0. The energy
system. Then the specific heat of this system deviates frof2ration between two equilibrium states is written as
that in equilibrium. E(T')—E(T)=AE. With the expressioriA4), the specific

Now we consider the following case. The system whichhéat in nonequilibrium system can be expressed as follows,
is the same as the former one, is in contact with a heat bath

at temperaturd. When the temperature of the heat bath is AE _ AE

changed td'’ at timet=0, the energy of the system changes c(T.H)= T _T{l_ (T(1), D)= T+ y(T(t) H-T'

from e(T,0) toe(T’,t), wheree(T,t) is nonequilibrium en- ’ (A5)
ergy. According to our formalism, specific heat in this case is

defined as where y(T(t),t) is an adequate function for holding this

equation. Then the form of the definitidA5) coincides with
e(T',t)—e(T,0) (az)  the definition(A2).
T -7 ' From these considerations, we found that the theoretical
definition (A3) is compatible with the experimental defini-
This coincides with the definition3) in the limit of T’ tion (A2). Therefore it seems to be valid to describe nonequi-
—T. The nonequilibrium energy can be expressed asibrium systems by using the definitiqA3).

c(T,t)=
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